Current File : /home/escuelai/public_html/biblioteca.escuelaintegral.edu.uy/javascript/d3/d3-quadtree.js
// https://d3js.org/d3-quadtree/ Version 1.0.1. Copyright 2016 Mike Bostock.
(function (global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
  typeof define === 'function' && define.amd ? define(['exports'], factory) :
  (factory((global.d3 = global.d3 || {})));
}(this, function (exports) { 'use strict';

  function tree_add(d) {
    var x = +this._x.call(null, d),
        y = +this._y.call(null, d);
    return add(this.cover(x, y), x, y, d);
  }

  function add(tree, x, y, d) {
    if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points

    var parent,
        node = tree._root,
        leaf = {data: d},
        x0 = tree._x0,
        y0 = tree._y0,
        x1 = tree._x1,
        y1 = tree._y1,
        xm,
        ym,
        xp,
        yp,
        right,
        bottom,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return tree._root = leaf, tree;

    // Find the existing leaf for the new point, or add it.
    while (node.length) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree;
    }

    // Is the new point is exactly coincident with the existing point?
    xp = +tree._x.call(null, node.data);
    yp = +tree._y.call(null, node.data);
    if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;

    // Otherwise, split the leaf node until the old and new point are separated.
    do {
      parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4);
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
    } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm)));
    return parent[j] = node, parent[i] = leaf, tree;
  }

  function addAll(data) {
    var d, i, n = data.length,
        x,
        y,
        xz = new Array(n),
        yz = new Array(n),
        x0 = Infinity,
        y0 = Infinity,
        x1 = -Infinity,
        y1 = -Infinity;

    // Compute the points and their extent.
    for (i = 0; i < n; ++i) {
      if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue;
      xz[i] = x;
      yz[i] = y;
      if (x < x0) x0 = x;
      if (x > x1) x1 = x;
      if (y < y0) y0 = y;
      if (y > y1) y1 = y;
    }

    // If there were no (valid) points, inherit the existing extent.
    if (x1 < x0) x0 = this._x0, x1 = this._x1;
    if (y1 < y0) y0 = this._y0, y1 = this._y1;

    // Expand the tree to cover the new points.
    this.cover(x0, y0).cover(x1, y1);

    // Add the new points.
    for (i = 0; i < n; ++i) {
      add(this, xz[i], yz[i], data[i]);
    }

    return this;
  }

  function tree_cover(x, y) {
    if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points

    var x0 = this._x0,
        y0 = this._y0,
        x1 = this._x1,
        y1 = this._y1;

    // If the quadtree has no extent, initialize them.
    // Integer extent are necessary so that if we later double the extent,
    // the existing quadrant boundaries don’t change due to floating point error!
    if (isNaN(x0)) {
      x1 = (x0 = Math.floor(x)) + 1;
      y1 = (y0 = Math.floor(y)) + 1;
    }

    // Otherwise, double repeatedly to cover.
    else if (x0 > x || x > x1 || y0 > y || y > y1) {
      var z = x1 - x0,
          node = this._root,
          parent,
          i;

      switch (i = (y < (y0 + y1) / 2) << 1 | (x < (x0 + x1) / 2)) {
        case 0: {
          do parent = new Array(4), parent[i] = node, node = parent;
          while (z *= 2, x1 = x0 + z, y1 = y0 + z, x > x1 || y > y1);
          break;
        }
        case 1: {
          do parent = new Array(4), parent[i] = node, node = parent;
          while (z *= 2, x0 = x1 - z, y1 = y0 + z, x0 > x || y > y1);
          break;
        }
        case 2: {
          do parent = new Array(4), parent[i] = node, node = parent;
          while (z *= 2, x1 = x0 + z, y0 = y1 - z, x > x1 || y0 > y);
          break;
        }
        case 3: {
          do parent = new Array(4), parent[i] = node, node = parent;
          while (z *= 2, x0 = x1 - z, y0 = y1 - z, x0 > x || y0 > y);
          break;
        }
      }

      if (this._root && this._root.length) this._root = node;
    }

    // If the quadtree covers the point already, just return.
    else return this;

    this._x0 = x0;
    this._y0 = y0;
    this._x1 = x1;
    this._y1 = y1;
    return this;
  }

  function tree_data() {
    var data = [];
    this.visit(function(node) {
      if (!node.length) do data.push(node.data); while (node = node.next)
    });
    return data;
  }

  function tree_extent(_) {
    return arguments.length
        ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1])
        : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]];
  }

  function Quad(node, x0, y0, x1, y1) {
    this.node = node;
    this.x0 = x0;
    this.y0 = y0;
    this.x1 = x1;
    this.y1 = y1;
  }

  function tree_find(x, y, radius) {
    var data,
        x0 = this._x0,
        y0 = this._y0,
        x1,
        y1,
        x2,
        y2,
        x3 = this._x1,
        y3 = this._y1,
        quads = [],
        node = this._root,
        q,
        i;

    if (node) quads.push(new Quad(node, x0, y0, x3, y3));
    if (radius == null) radius = Infinity;
    else {
      x0 = x - radius, y0 = y - radius;
      x3 = x + radius, y3 = y + radius;
      radius *= radius;
    }

    while (q = quads.pop()) {

      // Stop searching if this quadrant can’t contain a closer node.
      if (!(node = q.node)
          || (x1 = q.x0) > x3
          || (y1 = q.y0) > y3
          || (x2 = q.x1) < x0
          || (y2 = q.y1) < y0) continue;

      // Bisect the current quadrant.
      if (node.length) {
        var xm = (x1 + x2) / 2,
            ym = (y1 + y2) / 2;

        quads.push(
          new Quad(node[3], xm, ym, x2, y2),
          new Quad(node[2], x1, ym, xm, y2),
          new Quad(node[1], xm, y1, x2, ym),
          new Quad(node[0], x1, y1, xm, ym)
        );

        // Visit the closest quadrant first.
        if (i = (y >= ym) << 1 | (x >= xm)) {
          q = quads[quads.length - 1];
          quads[quads.length - 1] = quads[quads.length - 1 - i];
          quads[quads.length - 1 - i] = q;
        }
      }

      // Visit this point. (Visiting coincident points isn’t necessary!)
      else {
        var dx = x - +this._x.call(null, node.data),
            dy = y - +this._y.call(null, node.data),
            d2 = dx * dx + dy * dy;
        if (d2 < radius) {
          var d = Math.sqrt(radius = d2);
          x0 = x - d, y0 = y - d;
          x3 = x + d, y3 = y + d;
          data = node.data;
        }
      }
    }

    return data;
  }

  function tree_remove(d) {
    if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points

    var parent,
        node = this._root,
        retainer,
        previous,
        next,
        x0 = this._x0,
        y0 = this._y0,
        x1 = this._x1,
        y1 = this._y1,
        x,
        y,
        xm,
        ym,
        right,
        bottom,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return this;

    // Find the leaf node for the point.
    // While descending, also retain the deepest parent with a non-removed sibling.
    if (node.length) while (true) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (!(parent = node, node = node[i = bottom << 1 | right])) return this;
      if (!node.length) break;
      if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i;
    }

    // Find the point to remove.
    while (node.data !== d) if (!(previous = node, node = node.next)) return this;
    if (next = node.next) delete node.next;

    // If there are multiple coincident points, remove just the point.
    if (previous) return (next ? previous.next = next : delete previous.next), this;

    // If this is the root point, remove it.
    if (!parent) return this._root = next, this;

    // Remove this leaf.
    next ? parent[i] = next : delete parent[i];

    // If the parent now contains exactly one leaf, collapse superfluous parents.
    if ((node = parent[0] || parent[1] || parent[2] || parent[3])
        && node === (parent[3] || parent[2] || parent[1] || parent[0])
        && !node.length) {
      if (retainer) retainer[j] = node;
      else this._root = node;
    }

    return this;
  }

  function removeAll(data) {
    for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
    return this;
  }

  function tree_root() {
    return this._root;
  }

  function tree_size() {
    var size = 0;
    this.visit(function(node) {
      if (!node.length) do ++size; while (node = node.next)
    });
    return size;
  }

  function tree_visit(callback) {
    var quads = [], q, node = this._root, child, x0, y0, x1, y1;
    if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1));
    while (q = quads.pop()) {
      if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) {
        var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
        if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
        if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
        if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
        if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
      }
    }
    return this;
  }

  function tree_visitAfter(callback) {
    var quads = [], next = [], q;
    if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1));
    while (q = quads.pop()) {
      var node = q.node;
      if (node.length) {
        var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
        if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
        if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
        if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
        if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
      }
      next.push(q);
    }
    while (q = next.pop()) {
      callback(q.node, q.x0, q.y0, q.x1, q.y1);
    }
    return this;
  }

  function defaultX(d) {
    return d[0];
  }

  function tree_x(_) {
    return arguments.length ? (this._x = _, this) : this._x;
  }

  function defaultY(d) {
    return d[1];
  }

  function tree_y(_) {
    return arguments.length ? (this._y = _, this) : this._y;
  }

  function quadtree(nodes, x, y) {
    var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN);
    return nodes == null ? tree : tree.addAll(nodes);
  }

  function Quadtree(x, y, x0, y0, x1, y1) {
    this._x = x;
    this._y = y;
    this._x0 = x0;
    this._y0 = y0;
    this._x1 = x1;
    this._y1 = y1;
    this._root = undefined;
  }

  function leaf_copy(leaf) {
    var copy = {data: leaf.data}, next = copy;
    while (leaf = leaf.next) next = next.next = {data: leaf.data};
    return copy;
  }

  var treeProto = quadtree.prototype = Quadtree.prototype;

  treeProto.copy = function() {
    var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1),
        node = this._root,
        nodes,
        child;

    if (!node) return copy;

    if (!node.length) return copy._root = leaf_copy(node), copy;

    nodes = [{source: node, target: copy._root = new Array(4)}];
    while (node = nodes.pop()) {
      for (var i = 0; i < 4; ++i) {
        if (child = node.source[i]) {
          if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)});
          else node.target[i] = leaf_copy(child);
        }
      }
    }

    return copy;
  };

  treeProto.add = tree_add;
  treeProto.addAll = addAll;
  treeProto.cover = tree_cover;
  treeProto.data = tree_data;
  treeProto.extent = tree_extent;
  treeProto.find = tree_find;
  treeProto.remove = tree_remove;
  treeProto.removeAll = removeAll;
  treeProto.root = tree_root;
  treeProto.size = tree_size;
  treeProto.visit = tree_visit;
  treeProto.visitAfter = tree_visitAfter;
  treeProto.x = tree_x;
  treeProto.y = tree_y;

  exports.quadtree = quadtree;

  Object.defineProperty(exports, '__esModule', { value: true });

}));